77 research outputs found

    Postoperative skeletal stability at the one-year follow-up after splintless Le Fort I osteotomy using patient-specific osteosynthesis versus conventional osteosynthesis:a randomized controlled trial

    Get PDF
    The purpose of this study was to assess the 1-year skeletal stability of the osteotomized maxilla after Le Fort I surgery, comparing conventional osteosynthesis with patient-specific osteosynthesis. Patients were assigned to a conventional or patient-specific osteosynthesis group using prospective randomization. The primary outcome was the three-dimensional change in postoperative skeletal position of the maxilla between the 2-week and 1-year follow-up cone beam computed tomography scans. Fifty-eight patients completed the protocol for the 2-week postoperative analysis, and 27 patients completed the 1-year follow-up study protocol. Of the 27 patients completing the entire protocol, 13 were in the conventional group and 14 in the patient-specific osteosynthesis group. The three-dimensional translation analysis showed that the use of the patient-specific osteosynthesis resulted in a skeletally stable result, comparable to that of conventional miniplate fixation. For both the patient-specific osteosynthesis and conventional miniplate fixation groups, median translations of less than 1 mm and median rotations of less than 1° were observed, indicating that both methods of fixation resulted in a stable result for the 27 patients examined. For the Le Fort I osteotomy, the choice between patient-specific osteosynthesis and conventional osteosynthesis did not affect the postoperative skeletal stability after 1 year of follow-up

    Patient-specific finite element models of the human mandible:Lack of consensus on current set-ups

    Get PDF
    The use of finite element analysis (FEA) has increased rapidly over the last decennia and has become a popular tool to design implants, osteosynthesis plates and prostheses. With increasing computer capacity and the availability of software applications, it has become easier to employ the FEA. However, there seems to be no consensus on the input variables that should be applied to representative FEA models of the human mandible. This review aims to find a consensus on how to define the representative input factors for a FEA model of the human mandible. A literature search carried out in the PubMed and Embase database resulted in 137 matches. Seven papers were included in this current study. Within the search results, only a few FEA models had been validated. The material properties and FEA approaches varied considerably, and the available validations are not strong enough for a general consensus. Further validations are required, preferably using the same measuring workflow to obtain insight into the broad array of mandibular variations. A lot of work is still required to establish validated FEA settings and to prevent assumptions when it comes to FEA applications

    A Contemporary Approach to Non-Invasive 3D Determination of Individual Masticatory Muscle Forces:A Proof of Concept

    Get PDF
    Over the past decade, the demand for three-dimensional (3D) patient-specific (PS) modelling and simulations has increased considerably; they are now widely available and generally accepted as part of patient care. However, the patient specificity of current PS designs is often limited to this patient-matched fit and lacks individual mechanical aspects, or parameters, that conform to the specific patient’s needs in terms of biomechanical acceptance. Most biomechanical models of the mandible, e.g., finite element analyses (FEA), often used to design reconstructive implants or total joint replacement devices for the temporomandibular joint (TMJ), make use of a literature-based (mean) simplified muscular model of the masticatory muscles. A muscle’s cross-section seems proportionally related to its maximum contractile force and can be multiplied by an intrinsic strength constant, which previously has been calculated to be a constant of 37 [N/cm2]. Here, we propose a contemporary method to determine the patient-specific intrinsic strength value of the elevator mouth-closing muscles. The hypothesis is that patient-specific individual mandible elevator muscle forces can be approximated in a non-invasive manner. MRI muscle delineation was combined with bite force measurements and 3D-FEA to determine PS intrinsic strength values. The subject-specific intrinsic strength values were 40.6 [N/cm2] and 25.6 [N/cm2] for the 29- and 56-year-old subjects, respectively. Despite using a small cohort in this proof of concept study, we show that there is great variation between our subjects’ individual muscular intrinsic strength. This variation, together with the difference between our individual results and those presented in the literature, emphasises the value of our patient-specific muscle modelling and intrinsic strength determination protocol to ensure accurate biomechanical analyses and simulations. Furthermore, it suggests that average muscular models may only be sufficiently accurate for biomechanical analyses at a macro-scale level. A future larger cohort study will put the patient-specific intrinsic strength values in perspective

    Splintless surgery using patient-specific osteosynthesis in Le Fort I osteotomies:a randomized controlled multi centre trial

    Get PDF
    The accuracy of orthognathic surgery has improved with three-dimensional virtual planning. The translation of the planning to the surgical result is reported to vary by >2 mm. The aim of this randomized controlled multi-centre trial was to determine whether the use of splintless patient-specific osteosynthesis can improve the accuracy of maxillary translation. Patients requiring a Le Fort I osteotomy were included in the trial. The intervention group was treated using patient-specific osteosynthesis and the control group with conventional osteosynthesis and splint-based positioning. Fifty-eight patients completed the study protocol, 27 in the patient-specific osteosynthesis group and 31 in the control group. The per protocol median anteroposterior deviation was found to be 1.05 mm (interquartile range (IQR) 0.45-2.72 mm) in the patient-specific osteosynthesis group and 1.74 mm (IQR 1.02-3.02 mm) in the control group. The cranial-caudal deviation was 0.87 mm (IQR 0.49-1.44 mm) and 0.98 mm (IQR 0.28-2.10 mm), respectively, whereas the left-right translation deviation was 0.46 mm (IQR 0.19-0.96 mm) in the patient-specific osteosynthesis group and 1.07 mm (IQR 0.62-1.55 mm) in the control group. The splintless patient-specific osteosynthesis method improves the accuracy of maxillary translations in orthognathic surgery and is clinically relevant for planned anteroposterior translations of more than 3.70 mm

    Utilising the nasal aperture for template stabilisation for guided surgery in the atrophic maxilla

    Get PDF
    Background: Templates aim to facilitate implant placement in the prosthetically preferred position. Mucosa-supported and bone-supported templates are commonly used in the edentulous maxilla. In the atrophic maxilla (Cawood V and VI), however, these templates can be easily displaced due to a lack of supportive tissues, even in cases where anterior sites offer sufficient bone for implant placement. To assist in positioning and stabilisation, we designed a template that utilises the nasal aperture as a fulcrum to create a forced and exclusive fit. The aim of this study was to assess the clinical usability of the developed template and the corresponding implant placement accuracy in patients with edentulous atrophic maxillae. Deviations between planned and placed implant positions were measured by aligning pre- and post-operative cone beam computed tomography scans. Results: Twenty-four implants were placed in 11 patients. One template did not fit properly due to a slight undercut. All implants could be placed with good primary stability. The implants had high accuracy at the implant shoulder (global deviation 1.1 +/- 0.5 mm, lateral deviation 0.8 +/- 0.5 mm) and a mean angular deviation of 7.2 +/- 3.4 degrees. Conclusions: The developed surgical template offers stabilised and secure template placement in the edentulous atrophic maxilla, resulting in satisfying implant placement accuracy when using a semi-guided approach

    Three-dimensional virtual surgical planning in the oncologic treatment of the mandible

    Get PDF
    OBJECTIVES: In case of surgical removal of oral squamous cell carcinomas, a resection of mandibular bone is frequently part of the treatment. Nowadays, such resections frequently include the application of 3D virtual surgical planning (VSP) and guided surgery techniques. In this paper current methods for 3D VSP, leads for optimisation of the workflow, and patient specific application of guides and implants are reviewed. RECENT FINDINGS: Current methods for 3D VSP enable multi-modality fusion of images. This fusion of images is not restricted to a specific software package or workflow. New strategies for 3D VSP in Oral and Maxillofacial Surgery include finite element analysis, deep learning and advanced augmented reality techniques. These strategies aim to improve the treatment in terms of accuracy, predictability and safety. CONCLUSIONS: Application of the discussed novel technologies and strategies will improve the accuracy and safety of mandibular resection and reconstruction planning. Accurate, easy-to-use, safe and efficient three-dimensional VSP can be applied for every patient with malignancies needing resection of the mandible

    Three-Dimensional Guided Zygomatic Implant Placement after Maxillectomy

    Get PDF
    Zygomatic implants are used in patients with maxillary defects to improve the retention and stability of obturator prostheses, thereby securing good oral function. Prosthetic-driven placement of zygomatic implants is even difficult for experienced surgeons, and with a free-hand approach, deviation from the preplanned implant positions is inevitable, thereby impeding immediate implant-retained obturation. A novel, digitalized workflow of surgical planning was used in 10 patients. Maxillectomy was performed with 3D-printed cutting, and drill guides were used for subsequent placement of zygomatic implants with immediate placement of implant-retained obturator prosthesis. The outcome parameters were the accuracy of implant positioning and the prosthetic fit of the obturator prosthesis in this one-stage procedure. Zygomatic implants (n = 28) were placed with good accuracy (mean deviation 1.73 ± 0.57 mm and 2.97 ± 1.38° 3D angle deviation), and in all cases, the obturator prosthesis fitted as pre-operatively planned. The 3D accuracy of the abutment positions was 1.58 ± 1.66 mm. The accuracy of the abutment position in the occlusal plane was 2.21 ± 1.33 mm, with a height accuracy of 1.32 ± 1.57 mm. This feasibility study shows that the application of these novel designed 3D-printed surgical guides results in predictable zygomatic implant placement and provides the possibility of immediate prosthetic rehabilitation in head and neck oncology patients after maxillectomy

    Augmented Reality Visualization for Image-Guided Surgery:A Validation Study Using a Three-Dimensional Printed Phantom

    Get PDF
    Background Oral and maxillofacial surgery currently relies on virtual surgery planning based on image data (CT, MM). Three-dimensional (3D) visualizations are typically used to plan and predict the outcome of complex surgical procedures. To translate the virtual surgical plan to the operating room, it is either converted into physical 3D-printed guides or directly translated using real-time navigation systems. Purpose This study aims to improve the translation of the virtual surgery plan to a surgical procedure, such as oncologic or trauma surgery, in terms of accuracy and speed. Here we report an augmented reality visualization technique for image-guided surgery. It describes how surgeons can visualize and interact with the virtual surgery plan and navigation data while in the operating room. The user friendliness and usability is objectified by a formal user study that compared our augmented reality assisted technique to the gold standard setup of a perioperative navigation system (Brainlab). Moreover, accuracy of typical navigation tasks as reaching landmarks and following trajectories is compared. Results Overall completion time of navigation tasks was 1.71 times faster using augmented reality (P = .034). Accuracy improved significantly using augmented reality (P < .001), for reaching physical landmarks a less strong correlation was found (P = .087). Although the participants were relatively unfamiliar with VR/AR (rated 2.25/5) and gesture-based interaction (rated 2/5), they reported that navigation tasks become easier to perform using augmented reality (difficulty Brainlab rated 3.25/5, HoloLens 2.4/5). Conclusion The proposed workflow can be used in a wide range of image-guided surgery procedures as an addition to existing verified image guidance systems. Results of this user study imply that our technique enables typical navigation tasks to be performed faster and more accurately compared to the current gold standard. In addition, qualitative feedback on our augmented reality assisted technique was more positive compared to the standard setup. (C) 2021 The Author. Published by Elsevier Inc. on behalf of The American Association of Oral and Maxillofacial Surgeons
    • …
    corecore